No.84
April/2021
We have developed pretreatment technology, Cu sputter deposition technology, and CVD-Co deposition technology for semiconductor multilayer wiring technology. The New remote plasma Process of the pretreatment technology suppressed the damage to the Low-k film, and the uniformity in the wafer surface and the stability of the continuous treatment were obtained. The New CVD-Co Process realized a uniform film formation with a film thickness of 1.5 nm and obtained good coverage performance in a fine pattern. In the future, these wiring formation technologies are expected to be applied to Logic and Memory Devices.
Large Scale Integrated Circuit(LSI)などに用いられる半導体多層配線シャッフルカジノ プロモコードのための前処理シャッフルカジノ プロモコード、Cuスパッター堆積シャッフルカジノ プロモコード、およびCVD-Co堆積シャッフルカジノ プロモコードを開発した。前処理シャッフルカジノ プロモコードの水素ラジカルを用いた新しいリモートプラズマプロセスは、Low-k膜への損傷を抑制しつつ、ウェハ面内に均一で安定な連続処理をすることができる。また、イオン化スパッタシャッフルカジノ プロモコード(Self Ionized Sputter, SIS)によって、Cuイオンの指向性を向上させて、微細な配線パターン基板への均一なステップカバレッジを実現している。新しいCVD-Coプロセスは、膜厚1.5nmの均一な膜形成を可能とし、細かいパターンにおいて良好なカバレッジ性能を得た。将来的には、これらの配線形成シャッフルカジノ プロモコードがロジックおよびメモリデバイスへの応用が期待されている。
Phase change random access memory( PCRAM) is a type of non-volatile memory that is embedded in semiconductor devices and has been put to practical use as storage class memory (SCM) with high speed and large capacity at a lower cost than DRAM. It is also expected to be applied to neural computing, which mimics the neural circuits of the human brain. In order to realize PCRAM, it is essential to develop film deposition technologies and processes to realize appropriate film properties and mass productivity for the memory elements, selector elements, and electrode materials( carbon is widely used). In this paper, we will explain the status of technology development for depositing each of these elements, and also present the evaluation results of a prototype AI device using CVD technology for application in neural computing.
相変化メモリ(Phase Change Random Access Memory、PCRAM)は、DRAMよりも低コストで高速かつ大容量のストレージクラスメモリとして、半導体デバイスに組み込まれ実用化されている不揮発性メモリの一つである。また、人間の脳の神経回路を模倣するニューラルコンピューティングへの応用も期待されている。PCRAMを実現するためには、メモリ要素、セレクタ要素、および電極材料に対して適切な膜特性と大量生産性を実現するための膜堆積シャッフルカジノ プロモコードおよびプロセスの開発が不可欠である。相変化素子はカルコゲナイド材料からなるGe-Sb-Te(GST)を用いており、スパッタリング法によって良好な膜厚分布と低パーティクルを実現した。電極材料としては主にダイヤモンドライクカーボン(DLC)が導電性、バリア性、安定性を兼ね備えた膜として用いられており、同じくスパッタリング法によって重要なポイントである膜質分布、パーティクル、表面粗さが最適となるよう調整した。本稿では、これらの各要素を堆積するためのシャッフルカジノ プロモコード開発の状況を説明し、ニューラルコンピューティングへの応用に向けてCVDシャッフルカジノ プロモコードを用いたプロトタイプAIデバイスの評価結果も提示する。
Optical films can select transmittance and reflectance at certain wavelength by combination of thin films with different refractive index. And it have long been used as anti-reflection (AR) film, specific wavelength transmission filter, and so on. In past, optical films are deposited on certain substrate and assembled with electronic devices. However, recently case of assembling with optical films on wafer and electronic devices before dicing is increasing along the miniaturization of electronic devices. So deposition system for optical film is required to meet wafer process and particle control with semiconductor level. We developed sputtering system "ULDiS-1500PHL" for wafer, and report system and process especially for infrared band pass filter.
光学多層膜は屈折率の異なる薄膜を組み合わせることで、特定の波長における透過と反射を選択的に制御することができる。これらの光学膜は、反射防止(AR)膜や特定波長光学フィルタ(Band Pass Filter, BPF)などとして古くから使用されているが、近年では3D顔認証用のセンサーや距離計測用のLiDAR(Light Detection And Ranging)、生体認証などのデバイスにも活用されている。これまで、光学膜は特定の基板上に成膜され、電子デバイスと組み立てられている。しかし、最近では電子機器の小型化に伴い、ダイシング前のウエハや電子機器上に光学膜を組み合わせるケースが増えている。そのため、光学膜の成膜装置には半導体レベルのウエハプロセスやパーティクル制御に対応することが求められる。当社が開発したICP酸化源を有するウエハ用デジタルスパッタリング装置「ULDiS-1500PHL」の装置紹介と、赤外BPFのためのプロセスについて報告する。
Transparent Amorphous Oxide Semiconductor( TAOS) typified by amorphous IGZO( In-Ga-Zn-O) is promising materials for next-generation electronics devices. It can provide homogeneous and large area thin film inexpensively by sputtering equipment for mass production. The special properties of TAOS based devices such as amorphous structure, high mobility and low leak current may have potential to replace conventional Si based technology. Development of new TAOS material which has high mobility and high reliability is essential for the popularization of oxide based technology. In this paper we developed "Target H" as a high mobility oxide semiconductor sputtering target. The thin film deposited by DC (Direct Current) magnetron sputtering shows high Hall mobility above 25 cm2/Vs and amorphous structure regardless of partial pressure of oxygen during film deposition. The BCE-type TFT (Thin Film Transistor) by using Target H and IGZO were demonstrated. The estimated mobility of H was 34.8 cm2/Vs, which is 3 times larger than that of IGZO.
アモルファスIGZO(In-Ga-Zn-O)に代表される透明アモルファス酸化物半導体(Transparent Amorphous Oxide Semiconductor, TAOS)は、次世代エレクトロニクスデバイス材料として有望である。量産用スパッタリング装置により、安価に均一で大面積の薄膜を提供することができる。アモルファス構造、高移動度、低リーク電流などのTAOSを用いたデバイス特性は、従来のSiを用いたシャッフルカジノ プロモコードを置き換える潜在的な可能性をもつ。高移動度、高信頼性を有する新しいTAOS材料の開発は、酸化物系シャッフルカジノ プロモコードの普及に必要不可欠である。本稿では高移動度酸化物半導体スパッタリングターゲットとして「ターゲットH」を開発した。DC(直流)マグネトロンスパッタリング法によって成膜された薄膜は、成膜中の酸素分圧に関わらず25cm2/Vs以上の高いホール移動度とアモルファス構造を示した。ターゲットHとIGZOを用いたBCE型TFT(Back Channel Etch Thin Film Transistor)の評価を行ったところ、ターゲットHを用いたTFTの推定移動度は34.8cm2/VsとIGZOの3倍であった。また、信頼性の指標であるPositive Bias Temperature Stress(PBTS)とNegative Bias Temperature Stress(NBTS)に対してもIGZOと同等程度のバイアスストレス耐性を有する事が明らかになった。
In this report, low-damage dry etching technologies for Gallium nitride( GaN) power devices are presented using inductively coupled plasma reactive ion etching( ICP-RIE) equipment with the newlydeveloped high-frequency RF power supply. GaN vertical trench-gate metal-oxide-semiconductor field-effect transistors( MOSFETs) are promising devices for realizing high-breakdown voltage and low on-resistance. However, generally, when the trench-gate structure is fabricated by ICP-RIE, these properties degrade due to the plasma-induced damage which is formed near GaN surface. Our RF power supply contributes to the reduction of the damage by outputting accurately-controlled and ultimately-low bias power. This report introduces the overview of the RF power supply and the recent achievements using it.
本稿では、新しく開発した高周波RF電源を備えた誘導結合プラズマ反応性イオンエッチング(Inductively Coupled Plasma Reactive Ion Etching, ICP-RIE)装置を用いた、窒化ガリウム(GaN)パワーデバイスの低ダメージドライエッチングシャッフルカジノ プロモコードについて紹介する。GaN縦型トレンチゲート金属酸化物半導体電界効果トランジスタ(MOSFET)は、絶縁破壊電界強度が大きく、高電子移動度、低オン抵抗を実現する有望なデバイスである。しかし、一般的にトレンチゲート構造をICP-RIEで作製すると、GaN表面付近に形成されるプラズマ誘起ダメージによりこれらの特性が劣化することが知られている。当社のRF電源は、精密制御と極低バイアス電力を出力することで表面へのダメージの軽減を実現している。本稿では、RF電源の概要および低ダメージ化と高エッチングレート化を両立する多段バイアスエッチングシャッフルカジノ プロモコードについて紹介する。
No.83
September/2019
In this chapter, the MEMS sensor for automotive application and related functional material films, whose deposition technologies we develop, will be described. Performance of automobile was improved by the control system, enabling lower fuel consumption, higher safety and so on. MEMS sensor is essential for controlling systems as it can detect environmental changes and feedback the information to the system. Importance of automotive MEMS sensor is getting higher for the realization of a next-generation automobile such as an autonomous car, electric vehicle and so on. Realization of the MEMS sensor with a new function is expected by applying a variety of functional materials. More specifically, functional material films, PZT and VOx films which are developed by authors are introduced. Both films are deposited by the sputtering method and films with excellent performances can be obtained by unique sputtering and process technologies.
本稿では、当社が成膜シャッフルカジノ プロモコードを開発している車載用MEMSセンサーと関連する機能性材料膜について報告する。自動車は制御システムによって性能が向上し、低燃費や安全性の向上などが可能になった。Light Detection And Ranging(LiDAR)やHead-up display(HUD)、Intelligent Headlightに用いられているMEMSセンサーは環境の変化を検出し、その情報をシステムにフィードバックできるため、システムの制御に不可欠である。自動運転車や電気自動車などの次世代自動車の実現に向けて、車載用MEMSセンサーの重要性が高まっている。さまざまな機能性材料を応用することで、新たな機能を備えたMEMSセンサーの実現が期待されている。具体的には、著者らが開発した機能性材料膜として、圧電材料として用いられるチタン酸ジルコン酸鉛(PbZrxTi1-xO3、PZT)膜と赤外線センサに用いられる酸化バナジウム(VOx)膜を紹介する。どちらの膜もスパッタリング法により成膜されており、独自のスパッタリングシャッフルカジノ プロモコードとプロセスシャッフルカジノ プロモコードにより低温で高い圧電特性や抵抗温度係数(Temperature coefficient of resistivity、TCR)に優れた性能の膜が得られる。
Development of 3D sensing devices for autonomous driving has seen significant technical advances in recent years. Among them, Light Detection And Ranging(LiDAR)proves to be the most compatible for such sensors as it possesses characteristics that can further enhance the functionality of autonomous driving. Vertical Cavity Surface Emitting Laser(VCSEL)is economical and compact enough to be the light source of LiDAR. And dry process is the key to fabrication of VSCEL. However such fabrication method poses various challenges. To fabricate these devices, we have been developing high-uniformity etching technology, along with Interferometry End Point monitoring system. This paper will elaborate on the solutions took to address these challenges.
近年、自動運転用の3Dセンシングデバイスの開発は大幅なシャッフルカジノ プロモコード進歩を遂げている。その中でも、Light Detection And Ranging(LiDAR)は、自動運転の機能性をさらに高めることができる特性を持つため、車載センサーに最も適していることが知られている。垂直共振器型面発光レーザー(Vertical-Cavity Surface-Emitting Laser, VCSEL)は低コストなLiDARの光源として使用することができる。そのVCSEL製造の要となるのがドライプロセスであるが、製造方法にはさまざまな課題が残されている。これらのデバイスを製造するために、当社はアンテナ構造にInductively Super Magnetron(ISM)方式を採用しており、さらに光干渉による終点検知システムを用いることで高い均一性を有するドライエッチングシャッフルカジノ プロモコードを開発してきた。本稿では、これらの課題に対処するために取った解決策について詳述する。
The market of Li-ion batteries is expected to grow rapidly. Therefore, an advanced rechargeable battery is actively developed. Among them, a rechargeable battery using lithium metal as the anode is an ideal battery in term of energy density, and that is attracting attention as capable of high capacity and light weight. However, in order to put lithium metal anode into practical use, it is necessary to solve the dendrite that occur when charge / discharge reaction is repeated. It has issues in terms of safety and battery life. Compared to conventional roll press Li foil, our vacuum evaporated Li film has shown excellent cycle performance. Furthermore, it was also possible to stabilize the active Li surface after deposition by using "chemical-passivation" process which we developed.
リチウムイオン電池(Lithium-ion Battery, LiB)の市場は、スマートフォン、ドローン、電気自動車(Electric Vehicle, EV)などの分野において需要増により急成長が見込まれている。そのため、先進的な二次電池の開発が盛んに行われている。中でも、リチウム金属を負極に用いた二次電池は、エネルギー密度の点で理想的な電池であり、高容量・軽量化が可能な電池として注目されている。しかし、リチウム金属負極を実用化するためには、充放電反応を繰り返す際に発生するデンドライトを解決する必要があり、安全性や電池寿命の面で課題がある。真空巻取蒸着による当社のLi膜は、従来の圧延Li箔に比べ、表面平滑性に優れ、サイクル性能に優れている。さらに、当社が開発した「ケミカルパッシベーション」プロセスを用いることで、成膜後の活性なLi膜表面を安定化させることも可能である。
Carbon nanotube(CNT)electrodes vertically aligned on a copper foil substrate has been fabricated by using a thermal chemical vapor deposition(CVD)method. In the electrode, superior electron conduction pathes are formed over the whole of electrode. The electron conduction pathes are due to the fact that the CNTs are vertically aligned on the substrate with strong adhesion. The vertically aligned CNT electrode has been applied to a lithium ion capacitor(LIC)as a negative electrode material. The fabricated LIC shows high energy density compared to an electric double-layer capacitor(EDLC)to which a commercial activated carbon electrode material has been applied. Furthermore, the fabricated LIC shows high power density compared to a LIC to which a commercial graphite anode has been applied.
熱化学気相成長(Chemical Vapor Deposition, CVD)法とアセチレンガスを用いることで銅箔基板上にカーボンナノチューブ(Carbon Nanotube, CNT)電極を作製した。CNT電極では、電極全体に優れた電子伝導パスが形成されており、CNTが基板上に垂直配向し、強固に接着していることに起因する。この垂直配向CNT電極をリチウムイオンキャパシタ(Lithium Ion Capacitor, LIC)の負極材料に応用した。作製したLICは、市販の活性炭電極材料を適用した電気二重層キャパシタ(Electric Double Layer Capacitor, EDLC)と比較して高いエネルギー密度を示した。さらに、市販の黒鉛負極を用いたLICと比較しても高い出力密度を示した。
Situation surrounding the car industry has changed dramatically. The target of technological development has been shifted to electric vehicle(EV)or full cell vehicle(FCV). Battery, motor and power device represent the most essential technologies for EV and FCV. Power device is a semiconductor element which works as a switch to convert the electric power, e.g., metal oxide semiconductor field effect transistor(MOSFET)and insulated gate bipolar transistor(IGBT). Most of the current power device technology is based upon silicon(Si)wafer. Silicon carbide(SiC)and gallium nitride(GaN)attract attention as the next generation due to their high voltage resistant property with low electric resistance, which is suitable for power device. ULVAC works on productivity enhancement of thin Si wafer process equipment, ion implantation equipment for SiC, and process development of activating annealing to form p-type region in GaN power device based upon Magnesium (Mg)ion implantation.
自動車産業を取り巻く状況は大きく変化しており、シャッフルカジノ プロモコード開発のターゲットは電気自動車(Electric Vehicle, EV)や燃料電池自動車(Fuel Cell Vehicle, FCV)に移ってきている。EVやFCVにとって最も重要なシャッフルカジノ プロモコードは電池、モーター、パワーデバイスである。パワーデバイスとは、金属酸化膜半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor, MOSFET)や絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor, IGBT)など、電力を変換するスイッチとして機能する半導体素子のことである。現在のパワーデバイスシャッフルカジノ プロモコードのほとんどはSiウェーハに基づいている。炭化ケイ素(Silicon Carbide, SiC)や窒化ガリウム(Gallium Nitride, GaN)は、低電気抵抗かつ高耐圧という特性がパワーデバイスに適しているため次世代材料として注目されており、駆動電力の損失軽減やスイッチング速度の特性改善が求められる。当社は、薄型Siウェーハプロセス装置の生産性向上、SiC用イオン注入装置、マグネシウムイオン注入によるGaNパワーデバイスのp型領域形成のための活性化アニールのプロセス開発に取り組んでいる。
Magnets are produced through many processes, such as the alloy production process, hydrogen embrittlement process, sintering process and grain boundary diffusion process. To produce the high performance magnets for the vehicles' motors, ULVAC provides the suitable furnaces for each process. "Magcaster-600" is a melting furnace for the alloy production process to produce magnets with good grinding characteristics. "FHH series" are hydrogen furnaces for the hydrogen embrittlement process without exposure to the air. "FSC series" are inline type heat treatment furnaces for the sintering and aging processes. "Magrise series" are heat treatment furnaces for the grain boundary diffusion process to defuse heavy rare metals into the neodymium. This article introduces the features of the furnaces manufactured by ULVAC to produce the magnets for the vehicles' motors.
永久磁石は合金製造工程、水素脆化工程、焼結工程、粒界拡散工程など多くの工程を経て製造される。当社は自動車モーター用の高性能磁石を生産するため、各工程に適した磁石製造用工業炉を提供している。「Magcaster-600」は、切削性に優れた磁石を製造するための合金製造工程用溶解炉である。「FHHシリーズ」は、大気に触れさせずに水素脆化処理を行う水素炉である。「FSCシリーズ」は、焼結・時効工程用のインライン型熱処理炉である。「Magriseシリーズ」は、ネオジム中に重希土金属であるジスプロシウム(Dy)やテルビウム(Tb)を溶出させる粒界拡散プロセス用の熱処理炉であり、保磁力を改善することができる。本稿では、当社の自動車モーター用磁石向け製造炉の特長を紹介する。
No.82
September/2018
With our dry etching equipment, high density plasma (5E10~1E11 / cm3) can be generated at low pressure (0.07~13.3Pa) by ISM (Inductive Super Magbetron) type plasma source, uniform etching distribution by magnet It is possible.In this issue, we developed dry and wet composite mass production type dry etching equipment for high quality SAW filter.The feature of this device is solved by developing hardware that performs a series of processing under low dew pointenvironment wet etching after dry etching, against corrosion which is particularly likely to occur in composite metal film.
We have developed Cu alloy films with good adhesion to glass and resin substrates. For flat panel display (FPD)applications, particularly wiring material of the next generation high definition TV, high thermal resistance is required.Compared with Cu/Ti and Cu/Mo films commonly used as thin film transistor (TFT) wiring metal, our newly developed Cualloy exhibits higher thermal resistance characteristics. In addition, for printed circuit board (PCB) applications, new Cualloy film contributes to cost reduction by simplifying etching process comparing with Cu/Ti film as general wiring material.
We have investigated the thermoelectric elements using the spin Seebeck effect (SSE), in order to develop the novel thermoelectric device. The multilayered SSE elements of Y3Fe5O12 (YIG) and Pt, [YIG/Pt]n, were fabricated by sputtering.The sample of n=2 had the SSE coefficient 2 times as large as that of n=1. However, the SSE of n=3 sample was almost equal to that of n=2. This enhancement of SSE is considered to be contributed by the spin current enhanced in the multilayer [YIG/Pt]n.
S-I-S (superconductor-insulator-superconductor) multilayered structure theory has been proposed to achieve the maximum acceleration gradient of superconducting radio frequency cavities higher than the theoretical limit of conventional Nb cavities. In order to demonstrate this theory, we investigated the optimal deposition condition for reactive sputtering of NbN-SiO2 thin films and the correlation between the deposition conditions and the thin film properties. We finally made multilayered sample consisting of NbN-SiO2 thin films and bulk Nb substrate, which has good crystalline orientation.Moreover, we clarified that the lower critical field of the multilayered sample was higher than a bulk Nb. In other words, we succeeded in demonstrating the S-I-S theory for the first time in the measurement using the small sample.
Dry vacuum pumps are used in many production lines, including those for electronic parts and displays. Environmental considerations have led to dry vacuum pumps becoming mainstream thanks to their low power consumption. However,typical dry vacuum pumps with low power consumption tend to have the problem of long pumping down time, as they have a low pumping speed near atmospheric pressure. To solve this problem, ULVAC has developed a new dry vacuum pump series called LS series that combines high pumping speed with low power consumption. By increasing the pumping speed near atmospheric pressure, ULVAC has realized a dry vacuum pump with high pumping speed that uses the original technology developed by the company to reduce power consumption.
No.81
August/2017
"SMD 3400" is the large-scaled sputtering system, manufactured and developed for use in Generation 10.5 (G10.5), which mother glass size is approximately 3400×3000 mm, for TFT-LCD production line. "SMD 3400" is composed of Loading/Unloading position, Loading/Unloading chamber, heating chamber and 2 sputtering chambers. Planer targets of Cu and ITO are mounted respectively on the sputtering chamber in multi-cathode systems. This sputtering system has improved horizontal wave-formed thickness uniformity problem depends on the cathode arrangement by using new-type deposition method, although conventionally film thickness become thicker right in front of the target and thinner at between the targets. This new-type deposition method has successfully introduced to "SMD2400"so far, which established massproduction technology to improve luminance unevenness in display due to horizontal wave-formed thickness uniformity. We investigated film thickness uniformity, Rs uniformity, reflectance (for Cu), transmittance (for ITO) and film stress in the Cu and ITO process using "SMD3400". We obtaind film thickness uniformity less than 10% in both process as we expected by the simulation. We confirmed new-type deposition method improve Rs horizontal distribution. And good Rs uniformity, reflectance, transmittance and film stress were obtained at G10.5 substrate area.
For the In-Cell type touch screen panel, a high resistivity transparent electrode that can work as anti-static without affecting touch sensing is required. ULVAC selected Sputtering Process which is high in productivity and suitable for large size and successfully developed a high resistivity transparent conductive oxide electrode satisfying required specification.
We introduce silver nanoparticle ink, namely nanometal ink, which is essential for printed electronics. In recent, flexibility is required in the field of transparent electrodes for future flexible devices. Although indium tin oxide (ITO) is the most widespread material as transparent electrode, its lack of adequate flexibility and poor conductivity restrain from further development for future devices. We have attempted to make patterns of invisible and high conductive fine silver electrodes by a gravure offset printing method to meet both of transparency and flexibility. Here, silver nanoparticle ink was developed and applied to fabricate fine invisible silver electrodes with the line width of 5 μm. The fabricated electrode pattern of which the line/space is 5 μm / 300 μm has excellent electric conductivity and transparency. The patterned electrode has sheet resistance of sub-10 Ω/ □ , while its transparency is higher than 90.
In order to obtain semiconductor quantum dots with superior opto-electronic performance, several technologies are required including epitaxial growth, fine particle size control, and ligand control. We have synthesized quantum dot phosphors via these technologies. The quantum dot phosphors showed better color purity (full width at half maximum: 45.0 nm, chromaticity coordinates: 0.177, 0.688) than conventional phosphors such as β -SiAlON. A photoelectric converter using these quantum dots has been fabricated, which shows 16.7% of external quantum efficiency at 850 nm of infrared light. The result indicates a possibility of developing superior infrared image sensor than conventional organic CMOS image sensors.
A quartz crystal microbalance (QCM) is typically used to monitor the vapor deposition of organic materials, and QCM sensors feature a quartz crystal resonator with a resonance frequency of 5 or 6 MHz. When a metal or oxide film forms on a sensor, the rate at which the material adheres varies little. When an organic film forms on a sensor, however, the rate at which the material adheres varies considerably. This causes a problem since it greatly reduces the life of the quartz crystal resonator. The current work used several quartz crystal resonators with different fundamental frequencies to measure electrical and temperature characteristics during formation of an organic film. Results indicated that a quartz cr ystal resonator with a resonance frequency of 4 MHz or lower was better suited to sensing vapor deposition of an organic material than a resonator with a resonance frequency of 5 or 6 MHz.
Recently, the applications of TOF-SIMS have expanded into a wide variety of organic materials, because the sensitivity of high mass molecular ions was improved dramatically. However, it was very difficult to determine the chemical formula from the measured mass above m/z 200. The ambiguous peak identification was a significant problem in TOF-SIMS. In order to determine the chemical formula as well as detailed chemical structure, we developed the TOF-SIMS instrument equipped with Tandem MS (MS/MS), and applied it to analysis of various organic materials. In this article, we will introduce this unique instrument, and demonstrate the results of the spectra analysis using MS/MS.
No.80
February/2017
High-density packaging technologies such as 3D, 2.5/2.1D scheme basing on PCB (Print Circuit Board) substrate are among key technologies to satisfy the requirements from the both smart semiconductor devices and smart functional devices. ULVAC has been continuously developing manufacturing solutions for high-density packaging. In this paper, buildup multilayer technology solutions consisting of etching, ashing and PVD (Physical Vapor Deposition) sputtering to make the high density interconnection PCB panel substrate, will be introduced.
We have been developing sputtering tool for MRAM mass production, with simple module configuration and smaller footprint. It provides stable magnetic Co films and low damage MgO film with RA uniformity of 3.5%. Novel wide temperature process from -170℃ to 600℃ to fabricate excellent MTJ layers, will also be introduced.
We study about Niobium refining and elliptical cavity fabrication process for superconducting cavity. In order to carry out Niobium purification, 600 kW electron beam melting furnace was introduced in our factory. It makes possible the stable refining to obtain a cavity quality grade by optimization of melting condition. We performed the trial manufacturing of two single cell cavities are made from our high purity Niobium ingots (RRR>300). Maximum accelerating voltage of weldingtype and seamless - type cavities were achieved 41 MV/m and 37 MV/m at 2K, respectively. These values surpass the specification of international linear collider project. Also, seamless tube for three cell cavity was prepared as scale up study. Because an average grain size in the tube for three cell is smaller than that for single cell, it is expected that smoother surface is obtained after hydrofroming process.
Because of changes in the operating environment and the material processing with the vacuum equipment, lowering and fluctuation of the reading value of the ionization vacuum gauge has increased. Therefore, we focused on the triode ionization vacuum gauge that has a feature of high stability and high accuracy, we developed the world's first small metal type gauge head of triode ionization vacuum gauge. In environments such as oil is deposited, it was confirmed that a long period of time the reading value is more stable than the cold cathode ionization vacuum gauge and B-A ionization vacuum gauge.This triode ionization vacuum gauge that we have developed is an old technology, but we believe can contribute to solution in the new market.
ULVAC CRYOGENICS INCORPORATED (UCI) has been a leading provider of cryopumps, and on May 2014, it has been transferred the technology of cryocooler applied equipments from IWATANI INDUSTRIAL GASES CORPORATION (IIG). Now UCI has successfully fused its existing cryocooler and liquid nitrogen generator from IIG into new liquid nitrogen generator," UMP-40W". UCI now plans to actively promote sales of" UMP-40W" globally. We will discuss in detail the transfer of technology.
A newly developed "PHI Quantes" is introduced, which enables both XPS(X-ray Photoelectron Spectroscopy) and HAXPES(Hard X-ray Photoelectron Spectroscopy) by using Al Kα and Cr Kα, respectively. HAXPES has advantages comparing with ordinary XPS, such as deeper analysis depth to several 10 nm, surface contamination free analysis, nondestructive interface analysis and chemical state analysis by measuring inner shell electron. Some latest applications are also demonstrated to show the capability of " PHI Quantes".
このサイトでは、お客様の利便性や利用状況の把握などのためにCookieを使用してアクセスデータを取得・利用しています。Cookieの使用に同意する場合は、
「同意しました」をクリックしてください。「個人情報保護方針」「シャッフルカジノ ウィークリー」をご確認ください。